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Abstract: Let {X(t): teT} be a stochastic process equal in distribution to
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45 (fsf(t.s)A(ds)t teT}, where A is a symmetric independently scattered random
-:_-.

}:. measure and f is a suitable deterministic function. It is shown that various
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® properties of the sections f{-.s), s € S, are inherited by the sample paths of
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. X, provided X has no Gaussian component. The analogous statement for Gaussian
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1. Introduction. 8 8 0 0 3

A stochastic process X = {X(t): teT}, with an arbitrary index set T, is
said to be infinitely divisible (i.d.) if its finite dimensional distributions

are all i.d. An i.d. process X is said to be a stochastic integral process if

d
(%) {X(t): teT} = {J f(t,s) A(ds): t e T},
S

where f:TxS - R(C) is a deterministic function and A = {A(A): A e ¥} is an
independently scattered i.d. random measure on a 6-ring ¥ of subsets of a

certain set S. Here " = " denotes equality in (all finite-dimensional)
distribution(s). The equality (%) will be referred to as a stochastic integral
representation of X. The family of stochastic integral processes contains such
important i.d. processes as harmonizable, moving averages, fractional processes,
strictly stable and semistable, and also the so-called f-radial processes,
recently introduced and studied by M.B. Marcus [2].

In this paper we establish a connection between certain sample path
properties of stochastic integral processes (satisfying (%)) and the
corresponding properties of section of f(¢,s), s € S. In Theorem 4 (Section 4)
we show that the lack of certain analytic regularities of the sections of
f(+.s), s € S, (as for example: discontinuity, unboundedness, etc.) is inherited
by the sample paths of symmetric stochastic integral processes without Gaussian
component. The analogous statement for Gaussian processes is false as is
illustrated by an example. Integrability of sample paths is studied in Theorem
6 (Section 4), where we use a kind of Monte-Carlo technique to show that the
sections f(+,s), s € S, must have at least the same order of integrability as
the paths of X.

One way of looking at these results is that they provide immediately

serifiable necessary conditions for interesting sample path properties.

Therefore one may easily erclude a number of path properties that do not hold
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N and this gives an insight into the behaviour of the sample paths of the process.
o .
~#:~ The main tool used in this paper is the series representation of stochastic

. integral processes obtained in Section 3. This series representation, which we
FVN

\¢: derive as a special case of a "generalized shot noise” (see [7]). generalizes

-
o
X #Q various "LePage type" representations of symmetric stochastic integral processes
) (see Examples in Section 3).
D ‘-"Jj

é:- In Section 2 we give the pertinent facts concerning random measures and

o

fk stochastic integrals. Further details can be found in the work of B.S. Rajput
- and the author [5]. In Section 5 we discuss possible generalizations of the
Q?t results of Section 4 to not necessarily symmetric stochastic integral processes.
N
[~

!: Notation. We shall introduce now some notations that will be used

o

::: throughout this paper. A stochastic process A = {A(A): A e ¥} is said to be an

o

a4
}ji{ independently ascattened i.d. nandom measure (i.d. random measure, for short) if
(_ (a) for every pairwise disjoint Al' A2, ... ¥, the random variables

- A(A[). A(Ay).... are independent and

-..":\- @ ®

ret

ACUA) = 3 AA) as..

:) n=1 " n=1

e ©
o provided U A e ¥;
B n
N, n=1
e
5#:: (b) for every A e ¥, A(A) has an i.d. distribution.
LN
R Further, an i.d. random measure A is said to be symmectnic if -A(A) = A{A). for
s
- . d
e every A e ¥. A typical and important example of an i.d. random measure is the

random measure generated by the increments of a Lévy process, say {Z(s): seS},

" i
® -

j& where S is a (possibly unbounded) interval. By definition A((a.b])=Z(b)-Z(a), <l
’ -
.,

W (a.b] CS, and ¥ is the family of bounded Borel subsets of S. 1

*‘

. ©

.{. From now on we shall assume that the following condition is satisfied:

;"_ o @® 8
e there exists a sequence {Sn)n_1 C ¥ such that U Sn =S. A set Ae o(¥) is said = 1
> - n=1
f}ﬁ to be a A-zero set if A(Al) = 0 a.s. for every Al C A, Al e ¥. A o-finite
) ~'

e d4j/ ;
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3
measure A on o(¥) is said to be a control measure of A if A and N have the same
families of zero sets. In the case of the random measure generated by the
increments of a Lévy process, A may be chosen as the Lebesgue measure, but every
other measure equivalent to the Lebesgue measure is also a control measure of A.
An explicit form of a control measure for a general A is given in Proposition
2.1(c) [5].

To avoid obvious difficulties with the measurability of certain sets (see
Theorem 4) it is convenient to assume the separability of the representation
(*). The definition given below parallels Doob's definition of separability of
stochastic processes. Let T be a separable metric space. The representation
(%) is said to be separable if there exists a sequence {tn}:=l CT and a A-zero

set So C S with the property: for every t € T there exists a subsequence {t_}

of {tn} such that lim f(tn..s) = f(t,s), for every s e S\So. For example, 1f
k- K

the sections f(+.s), seS, are continuous (or one-sided continuous if T C R),
then the representation (%) is separable. As in the case of stochastic
processes, the separability of the stochastic integral representation is a
minimal assumption which can always be made, without loss of generality.
Indeed, let A(l) be a probability measure on o(¥), equivalent to A. Then
f={f(t.*): teT} may be viewed as a stochastic process and by the Doob’'s theorem
there exists a separable modification of f with values in a compactification of
R (C€). Such a modification does not affect (%), which completes the argument.
In this paper, (01,%,P) will denote a probability space, ¥(Z) the
distribution of a random element Z and Leb the Lebesgue measure on R. For

simplicity we will consider only real f’s in (%), but the results extend easily

to the complex case (see the Remark concluding Section 3).
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;\i 2. Symmetric i.d. random measures and stochatic integrals
K,
¢
.8
8 In this section we give the pertinent formulas and facts concerning

-
r,

stochastic integrals relative to i.d. random measures. These formulas will be

used in Section 3 to derive series representations of symmetric stochastic

v '-' ‘-' ':." "v

integral processes

Let A = {A(A): A e ¥} be a symmetric i.d. random measure without Gaussian

Cf component. The characteristic function of A(A) can be written in Lévy's form:
Pv-::.

o ~
] (2.1) 2(A(A))(u) = exp{2 f°o°(cos ux-1)F, (dx)}.

n
T

- u € R, where FA is a (symmetric) Lévy measure on R. Let A be an arbitrary but
]
,j fixed control measure of A. We shall show that there exists a measurable family
®
] (q(s.‘)}ses of Borel measures on (0,®) such that

\]

'\,I. [« ]

W (2.2) 2F,(B) = J [J,I.(x)q(s.dx)]In(ds).

s A A 0B

N

for every Borel set B C (0.») and A ¢ ¥; furthermore

s gy

‘ ; (2.3) A({seS: q(s.(0.«@)) = 0}) = O,

i?i and for every s e S,

?i (2.4) 5o x2)q(s.dx) < ®.

‘;: Indeed, as it was shown in Propositions 2.1 and Lemma 2.3 of [5]. the

;? measure v determined by v(A) = Im(l ~ x2)FA(dx). A e ¥, is a control measure of

E: A and, furthermore, there exists a measurable family {p(s.*)}ses of Lévy

;ﬁ; measures on R such that

- (2.5) Fy(B) = J [JT5(x)p(s.dx)Jo(ds).

e A R

:. Ae ¥, BCR. Since A and v are equivalent o-finite measures on o(#), there

‘iz exists a strictly positive and finite everywhere version ¥ of the Radon-Nikodym

E; derivative dv/dN. Put q(s.dx); = 2y(s)p(s.dx), s ¢ ¥, x > 0. Then (2.2} follows

o~

é from (2.5). Since p(s.*) is a Lévy measure, (2.4) is satisfied. Finally note

; E that Ao = {s:q(s.(0,®)) = 0} is a A-zero set by (2.2) and (2.1)., so that A(Ao) =

3.’ 0. VWe have proven (2.2)-(2.4). {
i

; Using (2.2). (2.1) can be rewritten in the form: ;
-

R A AR A s A A
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& 5
l'
C- ~ 00
X 2(A(A))(u) = exp{S[J [cox ux-1]q(s.dx)]Ar(ds)}.
}‘:n:'f A
o Set
©, . 2
. ®(u.s) = Jo(17(wx)*Ja(s.ax).
o
AN
fﬁ s eSS, ue R, and
.
\.“
e Ly = {87 S o R: g is o(¥)-measurable and So(g(s).s)A(ds) < ®}.
D) S
:ﬁ; Then L¢ is a linear metric space (a so-called Musielak-Orlicz space) with the
:i
ﬁ: F-norm defined by
'\._:,_x 1
- ||g||¢ = inf{c>0: [f®(c "g(s).s)A(ds) <c}.
- S
:? The next proposition, which follows as a particular case from Theorem 3.4
R
::; and Proposition 3.6(i) in [5], states the basic facts regarding Wiener-type
n
® stochastic integrals relative to symmetric i.d. random measures.
"?
I\l
0
iy ‘\.n
;::: PROPOSITION 1. Jhenre exiots a unique (somorphiom, dencted by [ (+)dA, frcm
Nn S
! L¢ into L (Q,5.P) such that
-':-‘ o
)_'--' n n
o J(za,, )JdA = I a A(A,) a.s.
b . A,
s s j=1 34 =11
e
i)' fon esery n ) 1, aj,....a e R and paiwsise disjcint Al.....An e ¥. Jurthen,
o the chanacteniatic function of JgdA is gisen by
'-:._~
) ".‘: -~ 0
o (2.6) 2(JgdA) (u) = exp{J[f(cos(uxg(s))-1)q(s.dx)]A(ds)}.
A S S
®
j"';
.r!:)
;ﬁ}: 3. Series developments of symmetric stochastic integral processes.
1‘_’#’
ii}: Let A,A.q be as in the previous section, so that (2.1)-(2.4) hold. Set
!?‘ R(u.s) = inf{x>0: q(s.(x,®)) ¢ u}, u >0,
A
P
- (in words: for fixed s, R(+,s) is the right continuous inverse of the function
.-:':-
:{f x =+ q(s.(x.®)}). Let A(l) be an arbitrary probability measure on (S.o(Y¥))
9.
R, equivalent to A. Put
TN
AN (1)
W\, ".‘, (l) _ dA
ff&: R'"/(u.s) = R(udx (s).s), u >0, se8S,
o
‘.‘ where the version of the Radon-Nikodym derivative dA(l)/dA is chosen to be
N

ke

A OdF IV YL S i 'f,.'f{'f‘f{trvc-‘.v----."- -._",-,;‘ R R L L N T )
oY -':.‘v:‘u'rﬂ;',?\-,‘-,- .-;" se oI f*f'l”-'"-" '-{'J'"I"J"f o '-”., x ( ., '\;J\ W "'\':'."\"\

J;ﬁaﬁf&fﬁh&&@;
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strictly positive and finite everywhere.
Let {fn}. {en}. {en) be independent sequences of random elements

(variables) such that:

‘EE} —{fn) is a sequence of i.i.d. random elements in (S,0(¥)) with Q(EH) = X(l).
:Eﬂ; —{en} is a sequence of i.i.d. exponential random variables, i.e. P{en > x} =
. exp(-x). x > 0,
.;E: —{en} is a sequence of i.i.d. random variables with P{en=-1} = P(enzl} = %.
‘IE Put v = e, +...4e .
>
iii: PROPOSITION 2. et {X(t): teT} be a stochastic process satisfying (%),
;a;& whetre A (5 a symmetnic i.d. 1andom measure without $aussian ccaponent. Then
>
b with the abose notations, fo1 esery teT, the series
28 3 e &)

= V() = 3 e RO E)I(EE,)

-y

conselges a.s. and

e T

2 d
_:; {X(t): teT} = {Y(t): teT}.
' l‘i
e
vV
:) Proof. let g ¢ L¢ (recall Proposition 1). First we shall show that
s d » (1)
A8 (3.1) Jgdd = 3 e RM (v L€ )e(E)).
Lo S n=1
s
P where the series converges a.s. Indeed, this series can be written as a
L
-?3 particular case of a generalized shot noise (see [7]):
o @ N
.::'. (32) b H("n'fn) '
= n=1
?f where fn = (en.fn) are i.i.d. random elements in S = {-1,1}xS and H(u,v) =
™
"’-. ~
A eR(l)(u.s)g(s). u>0, v=(e,s) € S. In order to establish the convergence and
N
LAY
}}: distribution in (3.2) we shall verify the conditions of Theorem 2.4 in [7].
e
- First we need to show that
A
0, ~ _ 00 ~
‘{i; G(B) = { fO IB\{O)(H(U.V))duX(dv). B C R,
o S
»;0 is a Lévy measure, where
N
)
s PX v N M o w S o - A ] N - o - - e PR
N N Y B a0 e e I e i S R A S D Sl
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+ 26.) x Al

= #(E ) =

%

Observe that

(3.3) G(B) %C(—B) + %G(B).

where
G(U) = é[fglu\{o}(R(l)(u,s)g(s))du]A(l)(ds).

Since, for every x 2 O and s ¢ S,

(3.4) Leb ({w0: R (u.s) > x}) =
(1)
Leb ({u>0: R(ugi (s).s) > x}) =
dx(l)
Leb ({u>0: R{u,s) > x}) / (s) =
a(s. (x.=)) m(s)
we get
(3.5) G(U) = gffglu\{o}(xg(s))q(s-dx)JMds).

for every Borel set U C R,
On the other hand. by (2.6), (3.5) and (3.3),
£(fgdA)(u) = exp{f(cos(uy) - 1)G(dy)} =
S R
exp{J(cos (uy) - 1) G(dy)}.
R
for every u € R. Hence G is a Lévy measure and

(3.6) #(fgdA) = c,Pois(G).
s

Since, for every r > O,

A(r)

](H(u,v))i(dv)du =0

5o JH(uv)I
S

(3.1) follows from (3.6) and Theorem 2.4 [7].

Now we shall show that (3.1) implies the conclusion of the theorem.

Indeed, let t,,..., tm e T and a veeeea e R be arbitrary. Put

m
g(s)= 2 a_f(t.,.s). Then we get
J:l J J

\. *,."'\"
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m d m
TaX(t,) = Ta, Jf(t s)A(ds)
a1 9 g ds
S
d
= 3 e RV e el
m
:jzlaJY(t‘j),

which completes the proof.

EXAMPLES .

(i) 1f A(S) < =, then AL (A) = A(A)/A(S). A € o(¥). may be viewed as a
"natural choice"” of A(l). In this case dA(l)/dA = 1/A(S). hence R(l)(u,s) =
R(WA(S).s).

(ii) Let X(t) = fk(t-s)A(ds). t € R, be a moving average process. In this
R

case A is a stationary random measure, so that A=Leb on R. Hence A(l) can be
any distribution on R with non-vanishing density ¢ (e.g. Gaussian, double

exponential, etc.). By Proposition 2,

Y(t) = ElenR(7n¢(fn).§n)k(t—§n). t € R,
n=

has the same finite dimensional distributjons as {X(t): t ¢ R}.

-1/a

(iii) If A is symmetric a-stable, then R{u,s) = Cu ., where C is a
numerical constant. In this case,
(3.7) V(e) = ¢ 3 e A e g g
) - €n'n dA n >n’’

n=1

t e T is a version of {X(t): t e T} satisfying (%) (T is an arbitrary set).
(3.7) generalizes the representation in Marcus and Pisier [3], which assumes
A(S) < ®» and A(l) is chosen as in (i).

If one replaces the sequence (en) in (3.7) by a sequence {(n} of i.i.d.
zero-mean normal random variables with El(nla = 1, then the resulting series
will converge a.s., for each t, to., say Z(t). The process {Z(t): t e T} has the

same finite dimensional distributions as {X(t): t € T}. A proof of this
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statement parallels the proof of Proposition 2; the measure A, in this case, is

~

defined as the joint distribution of {_and £_. i.e. X:s((gn.fn)). on S =R x S:
the very special form of R(u,s) is crucial for (3.6) to hold. This generalizes
the representation in Marcus and Pisier [3] and gives a conditionally Gaussian
representation of symmetric stable processes with non-necessarily finite
spectral measures (see Lemma 1.6 [3]).

(iv) Let A be a symmetrization of a Poisson point process with intensity
measure A, i.e.

2(A(A))(u) = exp{2(cos u-1)A(A)}.

Then q(s.(x.@)) =2 if x < 1 and = 0 if x > 1. Hence R(u,s) = I and by

[0.2](u)'
Proposition 2,
()

Y(t) = Elenl(vn ax (fn) < 2)f(t.§n).
n=

t € T, has the same finite dimensional distributions as {X(t): t e T}. This

representation is especially interesting when A(S) = o,

REMARK. Proposition 2 holds true for complex stochastic processes satisfying
(*) with f comt.ler and A a 1eal symmetric i.d. random measure without Gaussian
component. To see this, let Xl(t) = ReX(t), X2(t) = ImX(t), fl(t.s) = Ref(t.s),
fz(t.s) = Imf(t,s). Set T' = Tx{1,2} and define, for t' = (t.k) e T",

X'(t') = Xk(t). f'(t',s) = fk(t.s).

Then (%) is equivalent to
d
{(X'(t'): t' e T} = {Jf'(t',s)A(ds): t'eT'}.
S
By Proposition 2 the stochastic process

Y'(t') = ZlenR(l)(wn,fn)f'(t'.§n). e T,
n=

is equally distributed with {X'(t'): t' € T'}. Hence the complex-valued
stochastic process
X(t) = X'((t.1)) + iX'((t.2)). t e T,

is equally distributed with
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Y(t) = Y'((t.1)) + iY'((t.2)). te T,

“ as it was claimed.

o

__: 4. Path properties of symmetric stochastic integral processes

x The following proposition is crucial for the proofs of Theorems 4 and 6 in
L“ this section.

;? PROPOSITION 3. et {X(t): t e T} be a stachastic process satiofying (),
if: where A (s a symmetnic i.d. random measuie sithout Gaussian component. et C be
: ” a measunalble (inean substace of R . Yutpoose that, fonr some sequence {tn} cCT,
eith prcbability one

ﬂ’ (X(t;). X(t;)....) e C.

.. Fhen

(f(ty.*). f(ty.*)....) eC  A-a.e.,

: whete N (5 a contiol measune of A.

Proof. Let )x(l) be a probability measure on (S.0(¥%)) equivalent to A.
:E Using the series representation from Proposition 2 we get

o

e (4.1) 0 = 2P((X(t). X(ty)....) € C) = 2P{(¥(t,).Y(t,)....) € C} =

= P{(Y(t).Y(t5)....) € C} + P{(Y'(t]).Y (t;)....) €C},

where Y'(t):ngler'lR(l)(vn,fn)f(t.fn), e; =€ and e’ = -e if n )2 SinceC is
S a linear space, the last expression in (4.1) is greater than or equal to

Ple R (v 8 )(F (e, 6) . E(tp6,)....) € C) =

, PU(E(t, .6 F(ty.6)....) €. R ) > 0) -

;“ é[lcc((f(tl.s).f(t?s)....))ISI(O'OO)(R(”(u.s))e—udu]?\(l)(ds).

OV

";.: This shows that the above integral (over S) is equal to zero and, to complete
-:E’ the proof of the Proposition, it suffices to show that

..:. (4.2) f:; I(O'w)(R(l)(u.s))e-udu >0 A1) _ 4.

.; Indeed, this integral is equal to zero for a given s if and only if

" Leb({u: R(I)(u.s) > 0}) = 0, which, in view of (3.4), is equivalent to

)
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11
q(s.{(0.2)) = 0. Since the last equality may hold only for s belonging to a

A(l)—zero set (recall (2.3)), (4.2) follows and the proof is complete.

In the statement of the next theorem we shall use the following notation:

2
:a let T be a metric space and g: T - R. We shall write

FS g € @1 if g is bounded on T,

;' g € @2 if g is continuous on T,

3 g € @3 if g is uniformly continuous on T,

gf g € 94 if g is Lipschitz continuous on T,

’A further, when T is a (possibly unbounded) interval

E? g e @5 if g is free of oscillatory discontinuities on T,

QJ g € %6 if g is of bounded pth variation on every subinterval of T,
‘: g € @7 if g is absolutely continuous on every subinterval of T,
1§E g e %8 if g is differentiable on T.

THEOREM 4. Yet T be a o-compact metric apace. YLet {X(t): t e T} be a

x Rann 17

L W

separable atochastic process admitiing a separable representation (%), shere A

i3 a symmetnic i.d. nandom meadune sithout Saussian component. Let A be a

NN

contnol meadure of A and suppose that for some k=1,..., 8,
AN {s € S: f(-.,s) € @k)) >0
(T is an intersal when k 2 5). Jhen
P({w e O X(-,0) € %k)) > 0.
Proof. Assume, to the contrary, that
(4.3) P({w: X(°,0) € Qk)) =1

Let (tn) C T be the set in the definition of the separability of representation

P SOE AN ST P A R

(*). Proceeding very similarly as in the proof of Theorem 2 in [1]. one can
find a linear measurable subspace Ck C Rm such that
A {s: (f(tl.s). f(t2.s)....) € Ck})
= M{s: f(-.5) € €})
and, by (4.3).

PP @ NANSASN@ATY U,

PPy

o
\

' o, L w*, -(\. v v e e W o P O W, W LA Pl LA L PL AN ) = "
Vo 5, AL CRL RO N, 7Y -~ W3 AN !
T a kWA O 'w"- RS TR ‘ L o‘. ANl M N g N MU }‘}‘g"ﬂ\‘-:’\&%l‘lo y

o W W W W
e Wty

» e DS O e O AT

s



TV
‘\v"‘r‘.‘- by
59 %

e
L)

Lan e 4
»

Ol

x
S
&5 S

“al
b

DL
'x)‘-l. "-," Y5
SR AP

Bl

P

[

LY,
NN

R

|

CEEEXE
« & X ¢
" ll' )..ﬂ" lf;ll"

.
[r 1
»

[}

nzé(;>

‘ {':"‘:*-,

S h N

$hN
A

Vels
O
.I-I
.
«

. .
: "f‘:’\-"‘: ® <
ol 2R R % 4% TN

&jgﬂ

o
o

0

:

L
M} ";A": N

&

}»}w}x}u}s;

12

P({w: (X(tl.u). X(tz.w)....) € Ck}) = 1.
Hence, by Proposition 3,
A{s: f(+.s) € €)) =0,

which contradicts the assumption of the theorem and ends the proof.

It is rather surprising that Theorem 4 fails in the Gaussian case. To see
this, we shall construct a bounded a.s., discrete parameter, Gaussian process
{X(t): t e T}, which satisfies (%) and such that {f(t,s): t € T} is unbounded,
for every s (note that the separability assumptions are satisfied trivially if T

is discrete).

EXAMPIE. Let A be the Gaussian measure generated by the increments of a
Brownian motion on § = [0,1] (i.e., A is a white noise on [0.,1]). Let (hn k) be

the Haar system on [0,1], i.e. ho 0=1 and

/2 if s e [(k-1)2%, (2k-1)72"]y,

h (s) =4 272 if s e [(2-1)72™T w2"),

0] otherwise,

1
Put zn.k = fohn ydA.  Since (hn.k) is an orthonormal

system, (Zn k) are i.i.d. N (0,1) random variables. Set T = {(n.k): n 2 1,
k=1,.... 2"} and put, for t = (n,k),

f(t.s) =n 'h_ (s). 0¢s <1,

X(t) = Jg £(t.s)A(ds) = n‘lzn'k :

Clearly, sup |f{t.s)]| = @ for every s e [0,1].
T

Since
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o S P{X(t)] >2}= 3 SPn"Z__]>2)

o T =1 k=1 n.k

-_-l te n
U s 1

n

o =3 2P{|§Zl'1|)n)

.h\_, n=1

- t 2 1,2

¢ 3 2"exp(-n“)Eexp(zZ5 ,) < ©,

ok 471.1

..'__. n:l

V) sup |X(t)] < ® a.s. by the Borel-Cantelli Lemma.

15 T

A

D

‘”3: REMARKS: (i) When the process {X(t): t € T} obeys the zero-one law (as in the
o stable or semistable cases), the conclusion of Theorem 4 can be strengthened to:
-_\.:,

53 P({X(*.0v) € €}) = 1.

r K

s (ii) Using Propositions 1 and 3, one can easily generalize Theorem 5.1 of
s,

!1 (6] (proven for symmetric stable processes) to arbitrais processes admitting

L
O
R
3

representation (%), with A being a symmetric i.d. random measure without

[N I
[

Gaussian component.
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Now we shall investigate the integrability property. Since, in this case,

\l
'

;zz a natural metric space of sample paths is some Lp—space. which consists of
:E; c{asses of equivalent functions, the methods of Theorem 4 can not be used. To
a resolve this difficulty, we shall use a kind of Monte-Carlo technique based on
-
">
,}?: the following elementary fact (which follows immediately from the Borel-Cantelli
g
::ﬁ; Lemma):
-
=
;:;: LEMMA 5. Yet Z, Zl' 22.... be i.i.d. nandom saniables and p € (0,°). Jhen
+Hg gy
%} E|Z|P ¢ © if and only if n 1"’zn-»o a.5., as n 2 ®,
o.-
rii:
}:: THEOREM 6. det (T.d, p) be a o-finite measure aspace. <Let {X(t): t e T} be
{-.‘a I
o, a measurable stochastic process shich admits nepresentation (%) auch that

f:TxS » R ia o x g(¥P)-measurable and A L5 a symmetric random measune esithout

Sausaian coapcnent. $Let N\ be a control measure of A and supposre that, for scac

p e (0,°),
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FIX(t) [Pu(de) < ®  a.s.
T

& Fhen

3 Fl£(t.s)|Pu(dr) < =

M T

: for A\-a.a. s e S.

N

'A

K. . be i.i.d. random elements

Proof. Assume first that pu(T) = 1. Let U.Ul.U2...

in T, which are defined on some auxiliary probability space (Ql.yl,Pl). such

that £(U)=u. Since, for P-a.a. we(l,

: I IX(U0).0) IP Pi(do)) = JIX(t.0) [Pu(dr) < =,

. Q, T

3 by Lemma 5 we have n_l/pX(Un.w) -0 Pl—a.s. By Fubini’'s theorem, for Pl—a.a.
f w, € Ql' n—l/pX(Un(wl).~) - 0 P-a.s., which can be written as follows:

i; (X(t;). X(t;)....) e C  P-as.,

where tn=tn(w1) = Un(wl) and

1/p

G
= ((an) e R: limn a = 0}.

./

14" n-xo

Clearly, C is a measurable linear supspace of R . By Proposition 3
(f(tl.°). f(tz,-)....) e C Aa.e.

Using Fubini's theorem again., we get, for A-a.a. seS, n-l/pf(Un.s) -0 Pl—a.s..

N wvhich, by Lemma 1, is equivalent to
N
" Fle(e.s) Pu(ds) = f 1£(U(0,).5) [P P (do,) < =
1 1Y

{ T 194
: 1

Theorem 2 is proven in the case u(T) =

In the general case, let u(l) be a probability measure equivalent to u, and

‘ let w(t) = (awaulD)(e). Pur 1 (r.s) = $MP(0)f(.5). X (1) = ¥1PLOX(1).

Then (Xl(t): teT} is a measurable process such that
: d
" {Xl(t)I teT} = {ffl(t.s)A(ds): teT)
{ S
' and
n

il

1%, (0P @0 = f1x(0 Pug@a) <= as.
T

!
K5
O

)

) WA ". W M ¥ ' -1 -‘\n“ <« !". " e L s J‘ ., |" e -t
N\ (X ) \ “ \ AT AT A \ g * Lo ( e
Wy ’.\ .¢ ﬁ‘l‘.‘ o & )n > '\v. )% WY \*‘p ": o = * » "S LYY \ 5S¢ '
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By the firs part of the proof we have

rle(e.s) [Pugde) = {Ifl(t.s)l”u“’(dt) <o,
T

for A-a.a. seS, which concludes the proof of the theorem.

Y

f-~

-,

£y

;\j 5. Path properties of general stochastic integral processes.

\

g;' The example following Theorem 4 shows that in the case of Gaussian

_ .

s

- processes satisfying (%), certain properties of sections of f may be not

n reflected in the behaviour of the sample paths of these processes. Further,

N none of the theorems in Section 4 is true for non-random processes. We

"2 illustrate this by the following (trivial) example: Let h:T - R be any function
3: and put f(t,s)=h(t)[1-2s], se(0,1). Let A be the Lebesgue measure and set

]

P Z(t)=féf(t.s)A(ds). Obviously Z(t)=0 for all t and one can say nothing about
”-

-? the regularities of f(+,s) (i.e. about h). These examples suggest that in order

r)
s a

Y

to extend the results of Section 4 to general i.d. processes one should
S investigate only the pure Poissonian part of an i.d. process (see Maruyama [4]

for the decomposition of i.d. processes). The method of symmetrization allows

;; one to remove the deterministic and Gaussian parts of an i.d. process and reduce
o the problem to the case of a symmetric Poissonian process. We apply this method
o

.i; below, to generalize Proposition 3 of the previous section.

i: Let X={X(t): teT} satisfy (%), where A is an arbitrary i.d. random measure

with control measure A. Suppose that for certain linear measurable subspace

.

CCR and (tn) C T, with probability one,

(5.1) (X(t,).X(ty)....) € C.

Let X' = {X'(t): teT} and A'={A'(A): Ae¥} be independent copies of X and A,

-

-

47 LW A ‘, (s 3
.i’.l') ',\_- 2’ ')% . L ".‘ln"n.' . 43!

-

respectively. Put §(t) = X(t) - X'(t) and X(A) = A(A) - A'(A). From (5.1) one

. gets

2% (5.2) (X(t,).X(t5)....) e C a.s.,
.-I

19
. and by (%)
"
n;

®

¢ )]

s
“u

[/

Y dh S
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) (5.3) {X(t): teT) = (ff(: s)A(ds): teT).

i . There exist mutually independent symmetric i.d. random measures
< M= (M(A): A e ¥) and W = {W(A): A e ¥} (defined perhaps on a different
S:; probability space than A) such that W is Gaussian, M has no-Gaussian component
\‘:-:

v and

o d

- {A(A): Ae¥} = {M{A) + W(A): A e ¥}.

h".-:

?:} In view of (5.2) and (5.3) we get

N N

] = 2P((X(t1),X(t2)....) € C)

_-::J.

i:: = 2P((Iu(t1) + Iw(tl)' In(t2) + Iw(‘z)"") ¢ C)
E;: 2 P((IM(tl)' IM(tz)....) ¢ C},

‘.: by the independence and symmetry, where

I,(t) = JE(t.5)M(ds). I (t) = Sf(t.s)¥(ds). teT.
“ S S

ifﬂi Hence
(\-x (Iy(€).I,(t;)....) € C a.s.

AN

:}} Applying Proposition 3 (for X(t) = IM(t)) one gets

.t

:3: (f(tl.'). f(tz.')....) eC ma.e.,

C

where m is a control measure of M, and this is the conclusion of Propsoition 3

- e
» 7
o 55

%
AALMSS,

in the general case. Note that m is absolutely continuous with respect to A but

X2 P

not necessarily vice versa.

Y'Y
@ 3 SIS

Proceeding likewise one can generalize Theorems 4 and 6 to arbitrary i.d.

'i‘;‘
R}

processes by an appropriate replacement of A by m, a control measure of the

e
g
2
-

non-Gaussian part of the symmetrization of A.
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